The points (a, a) (–a, -a) and (–√3a,√3a) form the vertices of an
Equilateral triangle
Let the points be A(a, a), B(-a, -a), C (–√3a,√3a)
Using distance formula,
BC = √(a+√3a)2+(a−√3a)2 = 2√2a
AB = √(a+a)2+(a+a)2 = 2√2a
AC = √(−a+√3a)2+(−a−√3a)2 = 2√2a
We get AB = BC = AC = 2√2 a
Therefore ABC is an equilateral triangle