The correct option is B False
→A=−2^i+3^j+5^k,^i+2^j+3^k and 7^i−^k→A=−2^i+3^j+5^k→B=^i+2^j+3^k→C=7^i−^k→AB will be given by →OB−→OA=(^i+2^j+3^k)−(−2^i+3^j+5^k)=3^i−^j−2^k→AC=→OC−→OA=(7^i−^k)−(−2^i+3^j+5^k)=9^i−3^j−6^k=3(3^i−^j−2^k)⇒→AC=3→AB
⇒ AC is parallel to AB with A as a common point. So A, B and C are collinear.