Let the co-ordinates of C be (x,y)
Since points A,B and D lie on y=ax2+bx+c,
14=4a−2b+c⋯(i)
7=a−b+c⋯(ii)
10=4a+2b+c⋯(iii)
Solving them,
⇒a=2,b=−1,c=4
⇒y=2x2−x+4
Area of quadrilateral will be least when area of ΔBCD is least, so
A=12∣∣
∣∣−171xy12101∣∣
∣∣
R2→R2−R1 and R3→R3−R1
=12∣∣
∣∣−171x+1y−70330∣∣
∣∣
=12|3x+3−3y+21|
=12|3x−6x2+3x−12+24|
=12|−6x2+6x+12|
A=3|x2−x−2|=3|(x+1)(x−2)|⇒dAdx=±3(2x−1)=0⇒x=12
A={3(x+1)(x−2) x∈(−∞,−1)∪(2,∞)−3(x+1)(x−2) x∈(−1,2)
So for x=12
A=−3(x2−x−2)⇒d2Adx2=−6<0
y=2×122−12+4=4
C≡(12,4)
Hence the value of the ordinate will be 4.