The correct option is A (4,83)or(4,−83)
Let the point on the curve 9y2=x3 be P(x1,y1)
differentiating the curve w.r.t x
2×9×y×dydx=3x2
⇒dydx=x22×3y
⇒(dydx)(x1,y1)=x212×3y1
Thus slope of Normal at P =−dydx=−3y1×2x21
Given normal makes equal intercept
⇒−3y1×2x21=±1
⇒−3y1×2x21=1
⇒−3y1×2=x21 so 9y21×4=x41⇒x31×4=x41
So x1=4,y=−83
⇒−3y1×2x21=−1
⇒2×3y1=x21 ..........(1)
Also point lies point on the curve 9y2=x3
⇒9y21=x31
⇒9×x4136=x31
⇒x1=4
⇒x1=4,y1=166=83
⇒(4,83)
Finally the points are (4,83)or(4,−83)
Hence, option 'A' is correct.