The correct option is B a parabola
y2=4a(x+asinxa)
⇒2ydydx=4a(1+acosxa×1a)
⇒dydx=2ay(1+cosxa)
Now for tangent to be parallel to x-axis,
dydx=0=2ay(1+cosxa)
⇒xa=π
⇒x=aπ
∴y2=4a(aπ+a×0)
⇒y2=4a2π=4ax
Clearly, this point lie on a parabola.
Hence, option 'B' is correct.