Given that, points
P(3,2,−4),Q(5,4,−6) and
R(9,8,−10) are collinear.
Q must divide line segment PR in some ratio externally and internally.
We know that,
Co-ordinates of point P(x,y,z) that divides line segment joining (x1,y1,z1) and (x2,y2,z2) in ratio m:n is
(x,y,z)=(mx2+nx1m+n,my2+ny1m+n,mz2+nz1m+n)
Let point Q(5,4,−6) divide line segment P(3,2−4), R(9,8,−10) in ratio k:1
Here,
x1=3,y1=2,z1=−4
x2=9,y2=8,z2=−10
and m=k,n=1
Putting values
Q(5,4,−6)=(k(9)+3k+1,k(8)+2k+1,k(−10)−4k+1)
(5,4,−6)=(9k+3k+1,8k+2k+1,−10k−4k+1)
Comparing x− co-ordinate of Q
⇒ 5=9k+3k+1
⇒ 5(k+1)=9k+3
⇒ 5k+5=9k+3
⇒ 4k=2
∴ k=12
So, k:1=1:2
∴ Point Q divides PR in ratio 1:2
The value of a is equal to 2.