The points (x1,y1) and (x2,y2) lie on the same side of ax+by+c=0 if ax1+by1+c and ax2+by2+c have the same sign.
Show that the plane ax+by+cz+d=0divides the line joining the points
(x1,y1,z1)and(x2,y2,z2) in the ratio
−ax1+by1+cz1+dax2+by2+cz2+d.
Two points (x1,y1) and (x2,y2) lie on the same side of the straight line ax + by +c = 0 if (ax1+by1+c) (ax2+by2+c) is positive