The correct option is A 6(cos3π4+isin3π4)
Let z=−3√2+3√2i
Then,
r=|z|=√(−3√2)2+(3√2)2=6tanα=∣∣∣Im(z)Re(z)∣∣∣=1⇒α=π4
Since the point representing z lies in the second quadrant, therefore, the argument of z is given by
θ=π−α=π−(π4)=(3π4)
So, the polar form of z=−3√2+3√2i is
z=r(cosθ+isinθ)⇒z=6(cos3π4+isin3π4)