The polar form of complex number z = i−1cosπ3+isinπ3 is.
z=i−1cosπ3+isinπ3z=i−1eiπ3i−1=√2(−1+i)√2=√2(−1√2+i1√2)
i−1=√2(cos3π4+isin3π4)=√2ei3π4
z=√2ei3π4eiπ3=√2ei⎛⎝3π4−π3⎞⎠
z=√2ei5π12z=√2(cos5π12+isin5π12)
So option B is correct
Find all the cube root of −4√2−4√2i
Prove that: (i) 2 sin 5π12 sinπ12=12 (ii) 2 cos 5π12 cosπ12 (iii) 2 sin 5π12 cos 5π12=√3+22