The polar form of −√32−i2 (where i = √−1) is
Let Z = −√32−i.12
Sin (−√32,−12) lies in 3rd quadrant
∴ Principal value of arg(z) = −π+tan−1∣∣ ∣∣(−12)(−√32)∣∣ ∣∣
= −π+tan−1(1√3) = −π+π6 = −5π6
|z| = √[−√32]2+(−12)2 = √34+14 = 4
∴ polar from of z = |z|(cos (arg z)+i sin (arg z))
= cos (−5π6)+isin(−5π6)