The polar form of (i25)3 is
cos π2−i sin π2
(i25)3=(i)75=(i)4×18+3=(i)3=−i (∵ i4=1)Let z=0−i
Since, the point (0, -1) lies on the negative direction of imaginary axis.
Therefore, arg (z) = −π2
Modulus, r = |z| = |1| = 1
∴ Polar form = r(cos θ+i sin θ)
=cos(−π2)+i sin(−π2)=cos π2−i sin π2