The polynomial ax3 + bx2 + x – 6 has (x + 2) as a factor and leaves a remainder 4 when divided by (x – 2). Find a and b.
Let p(x)= ax3 + bx2 + x -6
By using factor theorem, (x+2)is a factor of p(x), only when p(-2) = 0
p(-2) = a(−2)3 + b(−2)2 + (-2)-6=0
⇒ -8a+4b-8=0
⇒ -2a+b=2 ...(i)
Also when p(x) is divided by (x- 2) the reminder is 4.
∴ p(2)=4
⇒ a(2)3+b(2)2+2-6=4
⇒ 8a+4b+2-6=4
⇒ 8a+4b=8
⇒2a+b=2 ...(ii)
Adding equation(i) and (ii) weget(-2a+b)+(2a+b)=2+2
⇒ 2b=4
⇒ b=2
Putting b=2 in (i) we get
⇒-2a+2=2
⇒-2a=0
⇒a=0
Hence,a=0 and b=2