The correct option is A −34
Consider x2−2x−3=0
⇒x2−3x+x−3=0
⇒x(x−3)+1(x−3)=0
⇒(x+1)(x−3)=0
⇒x=−1,3
Since x2−2x−3 divides p(x)=2x4−x3−7x2+ax+b
∴p(−1)=0,p(3)=0 By Factor theorem
p(−1)=0⇒2(−1)4−(−1)3−7(−1)2+a(−1)+b=0
⇒2+1−7−a+b=0
⇒a−b=−4 ...(i)
Again,p(3)=0⇒2(3)4−(3)3−7(3)2+a(3)+b=0
⇒162−27−63+3a+b=0
⇒3a+b=−72 ...(ii)
On adding (i) and (ii), we get
4a=−76⇒a=−19
From (i)
b=a+4⇒b=−15
∴a+b=−19−15=−34
Option A is correct.