The polynomials ax3+3x2 - 3 and 2x3 - 5x + a when divided by (x-4) leave the remainders R1 and R2 respectively. Find the values of a in each case of the following cases, if
(i) R1=R2
(ii) R1+R2=0
(iii) 2R1−R2=0
Let f(x) = ax3+3x2 - 3
g(x) = 2x3 - 5x + a
and divisor q(x) = x - 4
x - 4 = 0 ⇒ x = 4
Now remainder in each case,
R1 = f(4) = a(4)3+3(4)2 - 3 = 64a + 48-3
= 64a + 45
and R2 = g(4) = 2(4)3 - 5(4) + a = 2 × 64
- 20 + a
= 128 - 20 + a = 108 + a
Now,
(i) If R1=R2, then
64a + 45 = 108 + a ⇒ 64a - a = 108 - 45
⇒ 63a = 63 ⇒a=6363=1
a = 1
(ii) If R1+R2 = 0
⇒ 64a + 45 + 108 + a = 0 ⇒ 65a + 153 = 0
⇒ 65a = - 153 ⇒a=−15365
∴a=−15365
(iii) 2R1−R2=0 ⇒ 2(64a+ 45) - 108 + a = 0
⇒ 128a + 90 - 108 - a = 0
⇒ 127a - 18 = 0⇒ 127 a = 18
⇒a=18127
∴a=18127