Given polynomials:
p(x)=ax3+4x2+3x−4
q(x)=x3−4x+a
Using remainder theorem, the remainders when p(x) and q(x) are divided by (x−3) are p(3) and q(3) respectively.
p(3)=a×(3)3+4×(3)2+3×3−4
p(3)=27a+41
q(3)=(3)3−4×3+a
q(3)=15+a
Given that the remainder is the same.
⇒p(3)=q(3)
⇒27a+41=15+a
⇒26a=−26
⇒a=−1