The position vector of four identical masses of mass 1kg each are →r1=(^i+2^j+7^k),→r2=(3^i+5^j+^k),→r3=(6^i+2^j+3^k) and →r4=(2^i−^j+5^k). Find the position vector of their centre of mass.
A
(2^i+3^j+4^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(4^i+3^j+2^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(3^i+4^j+2^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(3^i+2^j+4^k)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(3^i+2^j+4^k) All masses are equal (Given) m1=m2=m3=m4=m=1kg The position vector of COM of the four particles is given by →rcom=m1→r1+m2→r2+m3→r3+m4→r4m1+m2+m3+m4 Substitute the values, we get →rcom=(1)(^i+2^j+7^k)+(1)(3^i+5^j+^k)+(1)(6^i+2^j+3^k)+(1)(2^i−^j+5^k)1+1+1+1 =(12^i+8^j+16^k)4 →rcom=(3^i+2^j+4^k)