The position vector of four particles of masses m1=2kg,m2=4kg,m3=6kg,m4=8kg are →r1=2^i+3^j+0^k,→r2=0^i+2^j+3^k,→r3=2^i+0^j+3^k;→r4=2^i+3^j+3^k. The position vector of their centre of mass is given by
A
16^i+19^j+27^k11
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1.6^i+1.9^j+2.7^k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
8^i+9^j+13^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
32^i+38^j+54^k11
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B1.6^i+1.9^j+2.7^k Given m1=2kg,m2=4kg,m3=6kg,m4=8kg →r1=2^i+3^j+0^k;→r2=0^i+2^j+3^k →r3=2^i+0^j+3^k;→r4=2^i+3^j+3^k
Let rcm be the COM of the system of particles
Then, −−→rcm=m1→r1+m2→r2+m3→r3+m4→r4m1+m2+m3+m4 =2(2^i+3^j+0^k)+4(0^i+2^j+3^k)+6(2^i+0^j+3^k)+8(2^i+3^j+3^k)20 =(4^i+6^j)+(8^j+12^k)+(12^i+18^k)+(16^i+24^j+24^k)20 =32^i+38^j+54^k20=1.6^i+1.9^j+2.7^k