The position vector of four points P,Q,R,S are respectively 2^i+^k,5^i+3√3^j+4^k,−2√3^j+^kand2^i+^k Prove that PQ and RS are parallel and PQ=32RS
Open in App
Solution
→P=2^i+4^k→Q=5^i+3√3^i+4^k→R=2√3^i+^k→S=2^i+^k→PQ=(5−2)^i+3√3^j+(1−4)^k→RS2^i+2√3^j+(1−1)^k=2^i+2√3=2(i+√3j) Hence the direction of both PQ & RS is i+√3j ⇒ PQ is parallel to RS. |PQ|=√32+(3√3)2=√9+27=√36=6|RS|=√22+(2√3)2=√16=4⇒PQRS−64=32