The correct options are
A The velocity
→v is given by
→v=(10^i+10^j)ms−1 C The torque
→τ with respect to the origin is given by
→τ=−(20/3)^k Nm
D The angular momentum
→L with respect to the origin is given by
→L=(−5/3)^k N ms
The position vector is
→r(t)=αt3^i+βt2^j∴ Velocity of particle →v(t)=d→r(t)dt=3αt2^i+2βt^j
⟹ →v(t=1)=3×103×12^i+2(5)(1)^j=10^i+10^j
Thus option A is correct.
Position vector at t=1 s →r(t=1)=103×13^i+5(12)^j=103^i+5^j
Angular momentum →L(t=1)=m[→r(t=1)×→v(t=1)]
∴ →L(t=1)=(0.1)[(103^i+5^j)×(10^i+10^j)]=(0.1)[1003^k−50^k]
⟹→L(t=1)=−53^k N ms
Thus option B is correct.
The acceleration of the particle →a(t)=d→v(t)dt=6αt^i+2β^j
∴ →a(t=1)=6×103×1^i+2(5)^j=20^i+10^j
Force on the particle →F(t=1)=m→a(t=1)=0.1(20^i+10^j)=2^i+^j N
Thus option C is incorrect.
Torque w.r.t origin →τ(t=1)=→r×→F
∴ →τ(t=1)=[(10/3)^i+5^j]×[2^i+^j]
⟹ →τ(t=1)=103^k−10^k=−203^k Nm
Thus option D is correct.