wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The position-vectors of A,B,C are (6,0,1),(8,3,7) and (2,5,10) respectively. Prove that there exists a point D such that ABCD is a rhombus. Find the position vector of D.

Open in App
Solution


Given A(6,0,1), B(8,3,7), C(2,5,10)
Let D=(x,y,z)
Vertices A,B,C & D have position vectors
Now, for ABCD to be rhombus,
ADBC
i.e, AD.BC=0
i.e, 6(6x)+2(y)+(3)(1z)=0
i.e, 366x2y3+3z=0
or, 6x+2y3z33=0(i)
ABCD
i.e, AB×CD=0
|ijk2362x5y10z|=0

3(10z)+6(5y)=0
2(310)+6(2x)=0
2(5+y)3(2x)=0
i.e, 303z306y=0z+3y=0(ii)
2z20+126x=03xz+4=0(iii)
10+2y6+3x=03x+2y+4=0(iv)
x=4/3,y=0,z=0
Position vector of D=(4/3,0,0)
i.e, 4/3i+0j+ok

1227720_1281278_ans_092ff2f4a47642a98ea77cf51cd4cf0a.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Tango With Straight Lines !!
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon