Given A(6,0,1), B(8,−3,7), C(2,−5,10)
Let D=(x,y,z)
Vertices A,B,C & D have position vectors
Now, for ABCD to be rhombus,
AD⊥BC
i.e, AD.BC=0
i.e, 6(6−x)+2(−y)+(−3)(1−z)=0
i.e, 36−6x−2y−3+3z=0
or, 6x+2y−3z−33=0⟶(i)
AB∥CD
i.e, AB×CD=0
⇒ |ijk−23−62−x−5−y10−z|=0
⇒3(10−z)+6(−5−y)=0
2(3−10)+6(2−x)=0
2(5+y)−3(2−x)=0
i.e, 30−3z−30−6y=0⇒z+3y=0⟶(ii)
2z−20+12−6x=0⇒3x−z+4=0⟶(iii)
10+2y−6+3x=0⇒3x+2y+4=0⟶(iv)
⇒x=−4/3,y=0,z=0
∴ Position vector of D=(−4/3,0,0)
i.e, −4/3i+0j+ok