wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The position vectors of the vertices A,B,C of a tetrahedron are (1,1,1),(1,0,0) and (3,0,0) respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at a point E. If the length of side AD is 4 and volume of the tetrahedron is 22/3 then find the all possible vectors of the point E.

Open in App
Solution

Given
A(1,1,1),B(1,0,0),C(3,0,0),D(x,y,z)
AD=4
(x1)2+(y1)2+(z1)2=4
(x1)2+(y1)2+(z1)2=16
Possible value of x,y,z are 4,1,1
D(4,1,1)

AB=^i^i^j^k
AB=^j^k
AC=3^i^i^j^k
AC=2^i^j^k
AB×AC=∣ ∣ ∣^i^j^k011211∣ ∣ ∣
AB×AC=^i(0)^j(2)+^k(2)
AB×AC=2^j+2^k
|AB×AC|=(2)2+22
|AB×AC|=8
|AB×AC|=22
Volume =223
13×|AB×AC|2height=223
222height=22
12height=1
height=2=DF

DF=2
(x4)2+(y1)2+(z1)2=2
(x4)2+(y1)2+(z1)2=4
Possible coordinates of F(x,y,z) are F(2,1,1)
eq of altitude
x42=y10=z10
let H is the mid point of line BC
H(3+12,0,0)
H(2,0,0)
eq of median from A
x11=y11=z11
Altitude meets at E on median so
eq of altitude
x42=y10=z10=λ
x=2λ+4
y=1
z=1
Putting x,y,z in eq of median
2λ+411=111=111
2λ+31=0=0
2λ+3=0
λ=32
putting λ in x
x=232+4
x=3+4
x=1
So, the point E(1,1,1).

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Tetrahedron
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon