Given
A(1,1,1),B(1,0,0),C(3,0,0),D(x,y,z)
AD=4
√(x−1)2+(y−1)2+(z−1)2=4
(x−1)2+(y−1)2+(z−1)2=16
Possible value of x,y,z are 4,1,1
D(4,1,1)
AB=^i−^i−^j−^k
AB=−^j−^k
AC=3^i−^i−^j−^k
AC=2^i−^j−^k
AB×AC=∣∣
∣
∣∣^i^j^k0−1−12−1−1∣∣
∣
∣∣
AB×AC=^i(0)−^j(2)+^k(2)
AB×AC=−2^j+2^k
|AB×AC|=√(−2)2+22
|AB×AC|=√8
|AB×AC|=2√2
Volume =2√23
13×|AB×AC|2height=2√23
2√22height=2√2
12height=1
height=2=DF
DF=2
√(x−4)2+(y−1)2+(z−1)2=2
(x−4)2+(y−1)2+(z−1)2=4
Possible coordinates of F(x,y,z) are F(2,1,1)
eq of altitude
x−4−2=y−10=z−10
let H is the mid point of line BC
H(3+12,0,0)
H(2,0,0)
eq of median from A
x−11=y−1−1=z−1−1
Altitude meets at E on median so
eq of altitude
x−4−2=y−10=z−10=λ
x=−2λ+4
y=1
z=1
Putting x,y,z in eq of median
−2λ+4−11=1−1−1=1−1−1
−2λ+31=0=0
−2λ+3=0
λ=32
putting λ in x
x=−232+4
x=−3+4
x=1
So, the point E(1,1,1).