The correct option is D 513
We have,
2n+10=2×22+3×23+4×24+…+n×2n
⇒2(2n+10)=2×23+3×24+…+(n−1)×2n+n×2n+1
Subtracting , we get
−2n+10=2×22+23+24+…+2n−n×2n+1
⇒−2n+10=8+8(2n−2−1)2−1−n.2n+1
⇒−2n+10=8+2n+1−8−n×2n+1
⇒−2n+10=2n+1−(n)2n+1
⇒2n+10=(n)2n+1−2n+1
⇒29=n−1⇒n=513