wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The possible radius of a circle whose centre is at the origin and which internally touches the circle x2+y26x8y+20=0,is

A
$2.5+\sqrt { 5 }$
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
$3.5+\sqrt { 5 }$
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
$5+\sqrt { 5 }$
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
$7.5+\sqrt { 5 }$
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A $5+\sqrt { 5 }Centre\rightarrow (0,0)\\ Distance\quad between\quad centres\quad =\quad ({ r }_{ 1 }-{ r }_{ 2 })\\ Let\quad centre\quad of\quad circle\quad be\quad (h,k)\quad and\quad other\quad circle\quad is\quad (3,4)\\ \Rightarrow \sqrt { (h-3{ ) }^{ 2 }+(k-4{ ) }^{ 2 } } =\quad [r-\sqrt { 9+16-20 } ].\\ \Rightarrow \sqrt { (h-3{ ) }^{ 2 }+(k-4{ ) }^{ 2 } } =\quad [r-\sqrt { 5 } ].\\ \because \quad Centre\quad is\quad origin,\\ \therefore \quad (0,0)\\ h=k=0\\ \Rightarrow 5=[r-\sqrt { 5 } ].\\ \Rightarrow 5=r-\sqrt { 5 } .\\ \Rightarrow r=5+\sqrt { 5 }.$

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Common Tangent to Two Circles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon