The possible value(s) of 'θ' satisfying the equation sin2θtanθ+cos2θcotθ−sin2θ=1+tanθ+cotθ , where θ∈[0,π] is/are
A
π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
7π12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C7π12 sin2θtanθ+cos2θcotθ−sin2θ=1+cotθ+tanθ ...(1) θ≠nπ because equation (1) is not defined ⇒sin4θ+cos4θsinθcosθ−sin2θ=1+sin2θ+cos2θsinθcosθ⇒(1−cos2θ2)2+(1+cos2θ2)2sinθcosθ−sin2θ=1+22sinθcosθ⇒1+cos22θsin2θ−sin2θ=1+2sin2θ⇒1+1−sin22θ−sin22θ=sin2θ+2⇒−2sin22θ=sin2θ∵θ≠nπ∴sin2θ=−12⇒θ=7π12,5π6 Ans: C