The correct option is A 5π6
Let z=[(1+i)5(1+√3i)2]−2i[√3−1−(√3+1)i]
and z1=1+i,z2=1+√3i,z3=−2(√3+1)−2(√3−1)i
Then z=z51z22z3
∴arg(z)=arg(z51z22z3)⇒arg(z)=arg(z51)+arg(z22)−arg(z3)⇒arg(z)=5arg(z1)+2arg(z2)−arg(z3)⇒arg(z)=5(π4)+2(π3)−(π12−π)+2kπ, k∈Z⇒arg(z)=17π6+2kπ, k∈Z
At k=−1 , arg(z)=17π6−2π
⇒arg(z)=5π6∈(−π,π]