The principal argument of the complex number 2+i4i+(1+i)2, ( where i=√−1) is
−tan−1(2)
∵2+i4i+(1+i)2=2+i4i+1+i2+2i=2+i4i+1−1+2i=2+i6i
=16−13i
θ=tan−1−1316=tan−1(−2)=−tan−1(2)
∵ our complex number lies in the fourth quadrant; principal argument = −tan−1(2)