The principal value of cos-112cos9π10-sin9π10is
3π10
17π20
7π10
None of these
Explanation for the correct option
cos-112cos9π10-sin9π10
=cos-112cosπ-π10-sinπ-π10 { Domain of cos-1x is [-1,1] }
=cos-112-cosπ10-sinπ10=cos-1(-1)12cosπ10+12sinπ10=cos-1(-1)cosπ4cosπ10+sinπ4sinπ10=cos-1(-1)cosπ4-π10[∵cosAsinB+sinAcosB=cos(A-B)]=π-cos-1cos3π20=π-3π20=17π20[∵cos-1[cos(-x)]=π-x]
Hence the correct option is option(B).
The principal value of sin−1(−12) is