The probabilities of three events A,B and C are P(A)=0.6,P(B)=0.4 and P(C)=0.5. If P(A∪B)=0.8,P(A∩C)=0.3,P(A∩B∩C)=0.2 and P(A∪B∪C)≥0.85, 0.04k≤P(B∩C)≤0.07k. Find the value of k.
Open in App
Solution
P(A∩B)=P(A)+P(B)−P(A∪B)=0.6+0.4−0.8=0.2 P(A∪B∪C)=P(A)+P(B)+P(C)−P(A∩B)+P(A∩B∩C)−P(A∩B)−P(B∩C)⇒P(B∩C)=1.2−P(A∪B∪C)∵0.85≤P(A∪B∪C)≤1∴(1)⇒P(B∩C)≤1.2−1−0.85 and P(B∩C)≥1.2−1⇒0.2≤P(B∩C)≤0.35.