The correct options are
B p+m+c=2720
C pmc=110
Let A, B and C respectively denote the events that the student passes in Maths, Physics and Chemistry.
It is given,
P(A) = m, P(B) = p and P(C) = c and
P (passing atleast in one subject)
=P(A∪B∪C)=0.75
⇒1−P(A′∩B′∩C′)=0.75
∵ [P(A)=1−P′(A)]
⇒1−P(A′).P(B′).P(C′)=0.75
∵ A, B and C are independent events, therefore A', B' and C' are independent events.
⇒ 0.75=1−(1−m)(1−p)(1−c)
⇒ 0.25=(1−m)(1−p)(1−c)
⇒0.25=1−p−m+mp−c+cp+cm−mpc
⇒0.25=1−(m+p+c)+(mp+pc+cm)−mpc .. . . .(i)
Also, P(passing exactly in two subjects) =0.4
⇒ P((A∩B∩¯C)∪(A∩¯B∩C)∪(¯A∩B∩C))=0.4
⇒ P(A∩B∩¯C)+P(A∩¯B∩C)+P(¯A∩B∩C)=0.4
⇒ P(A)P(B)P(¯C)+P(A)P(¯B)P(C)+P(¯A)P(B)P(C)=0.4
⇒ pm(1−c)+p(1−m)c+(1−p)mc=0.4
⇒ pm−pmc+pc−pmc+mc−pmc=0.4 . . .(ii)
Again, P (passing atleast in two subjects) =0.5 [Since P(¯A)=P′(A)]
⇒ P(A∩B∩¯C)+P(A∩¯B∩C)+P(¯A∩B∩C)+P(A∩B∩C)=0.5
⇒P(A).P(B).P′(A)+P(A).P′(B).P(C)+P(A).P(B).P(C)=0.5
⇒ pm(1−c)+pc(1−m)+cm(1−p)+pcm=0.5
⇒ pm−pcm+pc−pcm+cm−pcm+pcm=0.5
⇒ (pm+pc+mc)−2pcm=0.5 . . .(iii)
From Eq. (ii),
pm+pc+mc−3pcm=0.4 . . . (iv)
On solving Eqs. (iii), (iv):
From equation(iii)− equation(iv), we get
⇒(pm+pc+mc)−2pcm−pm−pc−mc+3pcm=0.5−0.4
∴pcm=0.1=110........(v)
Thus, option (c) is correct.
Substitute pcm=0.1 in equation(iv), we get
pm+pc+mc−3pcm=0.4
⇒pm+pc+mc−3(0.1)=0.4
⇒pm+pc+mc=0.4+0.3
∴pm+pc+mc=0.7.........(vi)
Substitute equation(v) and (vi) in equation (i), we get
⇒0.25=1−(m+p+c)+0.7−0.1
⇒m+p+c=−0.25+1.6
∴m+p+c=1.35=2720
Thus, the correct option is (B) (2720)