The probability density function of a random variable X is Px(x)=e−x for x≥0 and 0 otherwise. The expected value of the function gx(x)=e3x/4 is
We know that if f(x) is the p.d.f. for Random variable x then E(x)=∫∞−∞xf(x)dx
Now if g(x) is any other function of 'x' then
E(g(x))=∫∞−∞g(x).f(x)dx
So E(e3x/4)=∫∞−∞e3x/4.Px(x)dx
=∫∞0e3x/4.e−xdx=∫∞0e−x/4dx=4