The probability distribution of a discrete random variable X is given as under
X12342A3A5AP(X)121215325110125125
Calculate
(i) the value of A, if E (X) = 2.94.
(ii) variance of X.
(i) We have, ∑XP(X)=12+12+12+12+12+12
=25+20++24+10A+6A+10A50=69+26A50
Since, E(X) = ∑ XP(X)
⇒2.94=69+26A50
⇒ 26A=50× 2.94-69
⇒A=147−6926=7826=3
(ii) We know that
Var (X) = E(X2)−[E(X)]2
=∑X2P(X)−[∑XP(X)]2
=14+45+4825+4A210+9A225+25A210−[E(X)2]
=25+40+96+20A2+18A2+50A250−[E(X)]2
=161+88A250−[E(X)]2=161+88×(3)250−[E(X)]2[∵A=3]
=95350−[2.94]2 [∵ E(X)=2.94]
= 19.0600 - 8.6436 = 10.4164