The product of (4x−3y) and (16x2+12xy+9y2) is
(4x−3y)(16x2+12xy+9y2)
=(4x−3y)[(4x)2+(4x)(3y)+(3y)2]
=(4x)3−(3y)3 ...[(a−b)(a2+ab+b2)=a3−b3]
=64x3−27y3
Find the following products: (i) (3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx) (ii) (4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx) (iii) (2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca) (iv) (3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)