wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The product of perpendiculars drawn from the point (±a2b2,0) to the line xacosθ+ybsinθ=1, is:

A
a2b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a2+b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
b2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D b2
xacosθ+ybsinθ=1
bxcosθ+aysinθ=ab
bxcosθ+aysinθab=0 (equation 1)
Length of perpendicular from the point (a2b2,0)
P1=|bcosθ(a2b2+asinθ(0)ab)|b2cos2θ+a2sin2θ=|bcosθa2b2ab|b2cos2θ+a2sin2θ (equation 2)
Length of perpendicular from the point (a2b2,0) is,
P2=|bcosθ(a2b2)+asinθ(0)ab|b2cos2θ+a2sin2θ=|bcosθa2b2+ab|b2cos2θ+a2sin2θ
Product (P1,P2)
=|b2cos2θ(a2b2)a2b2|b2cos2θ
=a2b2cos2θb4cos2θa2b2b2cos2θ+a2sin2θ
=b2|(a2cos2θb2cos2θa2)|b2cos2θ+a2sin2θ
=b2|(a2(cos21)b2cos2θ)|b2cos2θ+a2sin2θ
=b2|a2sin2θb2cos2θ|b2cos2θ+a2sin2θ
=b2(a2sin2θ+b2cos2θ)(b2cos2θ+a2sin2θ)
=b2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Rotation concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon