The correct option is
D b2xacosθ+ybsinθ=1⟹bxcosθ+aysinθ=ab
⟹bxcosθ+aysinθ−ab=0 (equation 1)
Length of perpendicular from the point (√a2−b2,0)
P1=|bcosθ(√a2−b2+asinθ(0)−ab)|√b2cos2θ+a2sin2θ=|bcosθ√a2−b2−ab|√b2cos2θ+a2sin2θ (equation 2)
Length of perpendicular from the point (−√a2−b2,0) is,
P2=|bcosθ(−√a2−b2)+asinθ(0)−ab|√b2cos2θ+a2sin2θ=|bcosθ√a2−b2+ab|√b2cos2θ+a2sin2θ
Product (P1,P2)
=|b2cos2θ(a2−b2)−a2b2|b2cos2θ
=a2b2cos2θ−b4cos2θ−a2b2b2cos2θ+a2sin2θ
=b2|(a2cos2θ−b2cos2θ−a2)|b2cos2θ+a2sin2θ
=b2|(a2(cos2−1)−b2cos2θ)|b2cos2θ+a2sin2θ
=b2|−a2sin2θ−b2cos2θ|b2cos2θ+a2sin2θ
=b2(a2sin2θ+b2cos2θ)(b2cos2θ+a2sin2θ)
=b2