The correct option is A 6
Let the given matrix be 'A'
Characteristic Equation is |A−λI|=0
⇒∣∣
∣
∣
∣
∣∣1−λ000101−λ110011−λ100111−λ010001−λ∣∣
∣
∣
∣
∣∣=0
Expanding by 1st row
(1−λ)∣∣
∣
∣
∣∣1−λ11011−λ10111−λ00001−λ∣∣
∣
∣
∣∣+∣∣
∣
∣
∣∣01−λ11011−λ10111−λ1000∣∣
∣
∣
∣∣=0
or (1−λ)2∣∣
∣∣1−λ1111−λ1111−λ∣∣
∣∣−(1)∣∣
∣∣1−λ1111−λ1111−λ∣∣
∣∣=0 ...(1)
Let B=⎡⎢⎣1−λ1111−λ1111−λ⎤⎥⎦
⇒ |B|=−λ2(λ−3)
So (1−λ)2|B|−(1)|B|=0 [using (1)]
|B|[(1−λ)2−1]=0
−λ2(λ−3)[λ(λ−2)]=0
⇒λ3(λ−2)(λ−3)=0
So λ=0,0,0,2,3
Hence required product =2×3=6