The correct option is B a2b2a2+b2
Let (a secθ,b tanθ) be the any point on the hyperbola x2a2−y2b2=1
The equations of the asymptotes of the given hyperbola are xa−yb=0 and xa+yb=0
Now, p1 = length of the perpendicular from (a secθ,b tanθ) on xa+yb=0
=secθ−tanθ√1a2+1b2
and p2 = length of the perpendicular from (a secθ,btanθ) xa+yb=0
=secθ−tanθ√1a2+1b2
∴ p1p2=sec2θ−tan2θ1a2+1b2=a2b2a2+b2