From the question, sinAsinBsinC=p and cosAcosBcosC=q
∴ tanAtanBtanC=p/q (i)
Also, tanA+tanB+tanC=tanAtanBtanC=p/q (ii)
Now, tanAtanB+tanBtanC+tanCtanA
=sinAsinBcosC+sinBsinCcosA+sinCsinAcosBcosAcosBcosC
=12q[(sin2A+sin2B−sin2C)+(sin2B+sin2C−sin2A)+(sin2C+sin2A−sin2B)] [∵A+B+C=πand 2sinAsinBsinC=sin2A+sin2B−sin2C]
=12q[sin2A+sin2B+sin2C]=14q[3−(cos2Acos2Bcos2C)]
=1q[1+cosAcosBcosC]=1q(1+q)
The equation whose roots are tanA,tanB,tanC will be given by
x2−(tanAtanBtanC)x2+(tanAtanB+tanBtanC+tanCtanA)x−tanAtanBtanC=0
or x3−pqx2+1+qqx−pq=0 or qx3−px2+(1+q)x−p=0
Ans: 7