The product of the sines of the angles of a ΔABC is ϕ and the product of their cosines is q. Then the tangent of the angles is the roots of the equation
sin A sin B sin C=ϕ, cos A cos B cos C=q
And tan A tan B tan C=ϕq
Also tan A+tan B+tan C=tan A tan B tan C (true for any triangle)
⇒ tan A+tan B+tan C=ϕq
Now, tan A tan B+tan B tan C+tan C tan A =sinA sinB cosC+sinB sinC cosA+sinC sinA cosBcosA cosB cosC
=1q(sinA sinB cosC+sinC(sinB cosA cosB sinA))
=1q(sinA sinB cosC+sinC sin(A+B))
=1q(sinA sinB cosC+sin2C)
=1q[1+cosC(−cosC+sinA sinB)]
=1q[1+cosAcosBcosC]=1q(1+q)
The equation is x3−ϕqx2+1+qqx−ϕq=0
⇒qx3−ϕx2+(1+q)x−ϕ=0