Let
a be the first term and
d be the common difference and we know that
nth term,
Tn=a+(n−1)d∴T3=a+2d&T6=a+5dT3×T6=406
(a+2d)(a+5d)=406
a2+2ad+5ad+10a2=406
a2+7ad+10d2=406−(i)Now,T9=T4×2+6
a+8d=(a+3d)2+6
a+8d=2a+6d+6
a−2d+6=0
=2d−6−(ii)
Replacing a from (ii) in (i).
(2d−6)2+7(2d−6)d+10d2=406
4d2−24d+36+14d2−42d+10d2=406
28d2−66d+36=406
14d2−33d+18=203
14d2−33d−185=0
Using quadratic equation:
d=−(−33)±√(−33)2−4×14×(−185)2×14=33±√(33)2+4×14×18528=33±√1089+1036028=33±10728d=33+10728,33−10728=14028,−7428=5,−3728
But common difference cannot be negative in this case.
∴ Common difference=5.
From (ii)
a=2d−6=2×5−6=10−6=4
∴ The first term is 4.