Let a,b,c,d be the four roots of x4−183+kx2+200x−1984=0 such that ab=−32.
Then, a+b+c+d=18
ab+bc+cd+da+ac+bd=k
abc+abd+acd+bcd=−200
abcd=−1984
Since ab=−32 and abcd=−1984,
we have, cd=62
Then, from abc+abd+acd+bcd=−200, we have
−200=−32c−32d+62a+62b=−32(c+d)+62(a+b)
Solving this equation together with the equation a+b+c+d=18 gives
a+b=4, c+d=14
From ab+bc+cd+da+ac+bd=k, we have
k=ab+bc+cd+da+ac+bd=−32+ac+ad+bc+bd+62
⇒k=30+(a+b)(c+d)=30+4×14=86
⇒k=86