The pth, qth and rth terms of an A.P. are a, b, c, respectively. Show that (q−r)a+(r−p)b+(p−q)c=0.
Let A be the first term and d be the common difference of A.P.
Then ap=A+(p−1)d=a……(1)
aq=A+(q−1)d=b……(2)
ar=A+(r−1)d=c……(3)
Subtracting (2) from (1), we get
(p−q)d=a−b⇒p−q=a−bd
Subtracting (3) from (2), we get
(q−r)d=b−c⇒q−r=b−cd
Subtracting (1) from (3), we get
(r−p)d=c−a⇒r−p=c−ad
Now,
(q−r)a+(r−p)b+(p−q)c=(b−cda+(c−a)bd+(a−b)cd)
=ab−ac−bc+bc−ab+ac−bcd
=0d=0
Thus, (q−r)a+(r−p)b+(p−q)c=0