1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

# The pulley shown in figure has a moment of inertia I about its axis and mass m. Find the time period of vertical oscillation of its centre of mass. The spring has spring constant k and the string does not slip over the pulley.

A

2π(Ir2+m)4k

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2π4k(Ir2+m)
No worries! Weâ€˜ve got your back. Try BYJUâ€˜S free classes today!
C

(Ir2+m)4k

No worries! Weâ€˜ve got your back. Try BYJUâ€˜S free classes today!
D
none of these
No worries! Weâ€˜ve got your back. Try BYJUâ€˜S free classes today!
Open in App
Solution

## The correct option is A 2π√(Ir2+m)4k In the position of equilibrium we have 2T = mg Where T is the tension in each string ky0=T⇒ky0=mg2:y0=mg2k Also if the extension of the spring is y then If the CM of the pulley goes down by x the string must extend by an amount of 2x (x on both the sides) but string is of constant length, the spring must extend by 2x. At this random position the pulley is also rotating (has on angular velocity ω) v=12lω2+12mv2−mgx+12k(mg2k+2x)2 So in this position the total energy Now we also know that energy is conserved. So dudt=0 ⇒ddt[12I(vr)2+m2v2−mgx+12k(mg2k+2x)2] ⇒(Ir2+m)vdvdt+4kxv=0 ⇒dvdt=−4kx(Ir2+m) a=−ω2x ⇒ω2=4k(Ir2+m) T=2πω=2π√(Ir2+m)4k

Suggest Corrections
0
Join BYJU'S Learning Program
Related Videos
PHYSICS
Watch in App
Explore more
Join BYJU'S Learning Program