The quadratic equation tanθx2+2(secθ+cosθ)x+(tanθ+3√2cotθ) always has
Complex roots for all θ
Discriminant, △=B2−4ac
=(2(secθ+cosθ))2−4tanθ(tanθ+3√2cotθ)
=4(sec2θ+cos2θ+2)−4(tan2θ+3√2)]
=4[(sec2θ+cos2θ+2−(tan2θ+3√2)]
=4[(sec2θ+tan2+2+cos2θ+3√2)]
=4[1+2+cos2θ−3√2)
=4[3+cos2θ−3√2]
△=4[cos2+3−3√2]
cos2θ≤1
△≤4[1+3−3√2]
=4(4−3√2)
≃4(4−3x1.4
=4(−0.2)
⇒△is−ve
⇒No real roots