The correct option is C x2−x−1=0
Given that, Tn=Aαn−1+Bβn−1
∵T1=0
∴A+B=0
⇒A=−B ....(1)
∵T2=1
∴Aα+Bβ=1
⇒A(α−β)=1 ....(2) [ From (1) ]
∵T3=1
∴Aα2+Bβ2=1
⇒A(α2−β2)=1 ....[ From (1) ]
⇒A(α−β)(α+β)=1
⇒α+β=1 ....(3) [ From (2) ]
∵T4=2
∴Aα3+Bβ3=2
⇒A(α3−β3)=2 ....[ From (1) ]
⇒A(α−β)(α2+β2+αβ)=2
⇒α2+β2+αβ=2 ....(4) [ From (2) ]
⇒αβ=(α+β)2−1
⇒αβ=−1 ....(5) [ From (3) ]
If α and β are roots of a quadratic equation, then
x2−(α+β)x+αβ=0
⇒x2−x−1=0 ....[ From (3) & (5) ]
Ans: C