is a cyclic quadrilateral.
AH,BF,CF and DH are the angle bisectors of ∠A,∠B,∠C and ∠D
⇒ ∠FEH=∠AEB [ Vertically opposite angles ] ---- ( 1 )
⇒ ∠FGH=∠DGC [ Vertically opposite angles ] ---- ( 2 )
⇒ ∠FEH+∠FGH=∠AEB+∠DGC [ Adding ( 1 ) and ( 2 ) ]
Now, by angle sum property of a triangle,
∠AEB=180o−(12∠A+12∠B) and
∠DGC=180o−(12∠C+12∠D)
⇒ ∠FEH+∠FGH=180o−(12∠A+12∠B)+180o−(12∠C+12∠D)
⇒ ∠FEH+∠FGH=360o−12(∠A+∠B+∠C+∠D)
⇒ ∠FEH+∠FGH=360o−12×360o
⇒ ∠FEH+∠FGH=180o
Now, the sum of opposite angles of quadrilateral EFGH is 180o.
∴ EFGH is a cyclic quadrilateral.
Hence, the quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.