The quadrilateral formed by the lines y=ax+c, y=ax+d, y=bx+c and y=bx+d has area 18. The quadrilateral formed by the lines y=ax+c, y=ax−d, y=bx+c and y=bx−d has area 72. If a,b,c,d are positive integers then the least possible value of the sum a+b+c+d is
16
Smaller Quadrilateral
Area = 2 [(Δ ABC)]
=2(12|d−c||d−c||a−b|)
=(c−d)2|a−b|=18 . . . . (1)
Similarly, for larger Quadrilateral
Area=(c+d)2|a−b|=72 . . .(2)
Dividing (1) & (2), we get
c= 3d
∴ d2|a−b|=92
For a+b+c+d to be minimum & be positive integers, only possible values are a=3, b=1, c=9, d=3 or a=1, b=3, c=9, d=3.