The radii of the escribed circles of triangle ABC are ra,rb and rc respectively. If ra+rb=3R and rb+rc=2R, where R is radius of the circumcircle of triangle ABC and ∠B=πk, then the value of k is
Open in App
Solution
We have, ra+rb=3R ⇒Δs−a+Δs−b=3abc4Δ⇒4Δ2(s−a)(s−b)=3ab⇒4s(s−c)=3ab⇒(a+b+c)(a+b−c)=3ab⇒a2+b2−c2=ab⇒a2+b2−c22ab=12⇒cosC=12⇒C=π3
Similarly, from rb+rc=2R b2+c2−a2=0⇒cosA=0 ⇒A=π2
Hence, ∠B=π6⇒k=6