The radius of the circle 2x2+2y2−4xcosθ+4ysinθ−1−4cosθ−cos2θ=0 is
x2+y2−2xcosθ+2ysinθ−12[1+cos2θ+4cosθ]=0
x2+y2−2xcosθ+2ysinθ−12[2cos2θ+4cosθ]=0
x2+y2−2xcosθ+2ysinθ−cos2θ−2cosθ=0
(x−cosθ)2+(y+sinθ)2−(cos2θ+sin2θ)−cos2θ−2cosθ=0
Or
(x−cosθ)2+(y+sinθ)2−1−cos2θ−2cosθ=0
Or
(x−cosθ)2+(y+sinθ)2−(1+cosθ)2=0
Or
(x−cosθ)2+(y+sinθ)2=(1+cosθ)2
Comparing with
(x−α)2+(y−β)2=r2 we get
r=1+cosθ.