The correct option is A √5
Let, x2+2gx+2fy+c=0 be the equation of the circle orthogonal to x2+y2=40.
Hence, 2g1g2+2f1f2=c1+c2
⇒0+0=c−40
c=40
The point (8,4) lies on the circle. Hence,
80+16g+8f+40=0
10+2g+f+5=0
f=(−15−2g)
Radius =√g2+f2−40
Radius2=g2+f2=225+5g2+60g=5(g+6)2+45
To minimise the radius, g=−6
⇒Radius=√5
Hence, option 'A' is correct.