In the figure above,
O1R=1.5cm
O2S=3.2cm
PQ and RS are the transversal tangents and PQ=RS
Since the radii are perpendicular to tangents, ∠O1RT=∠O2ST=90∘
Consider the two triangles, ΔO1RT and ΔO2ST:
∠O1RT=∠O2ST=90∘
∠RTO1=∠STO2(VerticallyOppositeAngles)
Thus, ΔO1RT∼ΔO2ST by AA similarity criterion
Hence, O1TO2T=RTST=1.53.2.
Therefore, O1T+1.53.2×O1T=6.2
⟹O1T=4.22
O2T=1.5/3.2×4.22
⟹O2T=1.98
By Pythagoras theorem, RT=√O1R2+O1T2=√1.52+4.222
⟹RT=4.48
Similarly, ST=√O2S2+O2T2=√3.22+1.982
⟹ST=3.76
Thus, RS=RT+ST=4.48+3.76
⟹RS=PQ=8.24cm