The range ofa∈R for which the function f(x)=(4a–3)(x+loge5)+2(a–7)cotx2sin2x2,x≠2nπ,n∈Nhas critical points is
-43,2
[1,∞)
(-∞,–1]
(–3,1)
The explanation for the correct answer.
Solve the critical points of f(x)=(4a–3)(x+loge5)+2(a–7)×cotx2×sin2x2
f(x)=(4a–3)(x+loge5)+(a–7)sinx
f(x)=(4a–3)(x+loge5)+2(a–7)×cosx2sinx2×sin2x2⇒f'(x)=(4a-3)+(a-7)cosx=0⇒cosx=-4a-3a-7
⇒-1≤-4a-3a-7≤1(because –1≤cosx≤1)
⇒–1<4a-3a-7≤1
4a-3a-7–1≤0 and4a-3a-7+1>0
a.∈[43,7)and a∈(-∞,2)∪(7,∞)
∴-43≤a<2
Hence, option(A) is the correct answer.